I’ve been working on this off and on, for what seems like ages. It all started with the Enviro Weather and light example file, and a mock up of an Enviro using Breakout Garden stuff.
Basically what you see running on the Enviro on the shop page. With some minor edits.
That got expanded to two displays and two BME280’s. One for indoor readings and one for outdoor readings. I started with indoor on one screen and outdoor on the other. Then later switched it around so its indoor temp top left, outdoor temp top right, indoor humidity lower left and out door humidity lower right. Light and pressure on the other display. Then swapped the light sensor for a UV sensor.
The two displays are the 0.96" SPI Color LCD (160x80) Breakout. Its the same display used on the Enviro and Enviro+. They are mounted on a Proto Zero wired up to SPI0, left on CE0 and right on CE1.
Behind that is a second Proto Zero with an RV3028 RTC on top and BME280 on the bottom. Wired up to i2c. I wanted to keep the BME280 out of direct sunlight for better accuracy. It’s using the stock 0x76 i2c address.
Behind that is a Breakout Garden i2c Hat with the second BME280 (address 0x77) and a VEML6073 UV sensor breakout.
This is my coding setup, where I work out the bugs etc.
The above pHats and Hat are mounted on a modified pHat Stack. I cut one end off just past the last GPIO header. Right where the C and 4 are. Then soldered on a female 90 header. That lets me plug it into my Pi400 just like it was a Flat HAT Hacker for Raspberry Pi 400. It’s just twice as big with 4 headers instead of 2. All the Phats are facing the right way, towards you. =)
The coding was by far the hardest part. All the image calls etc. In the end I went with two separate images img_left and img_right. And created two separate backgrounds, even though they use the same identical background. Weird things happened if I didn’t. I also hope to add Wind Speed - Direction and Rainfall to the empty spot on the second display
WARNING Wall of code to follow. =)
#!/usr/bin/env python3
import os
import sys
import time
import numpy
import colorsys
import smbus
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from fonts.ttf import RobotoMedium as UserFont
import veml6075
import ST7735
from bme280 import BME280
import pytz
from pytz import timezone
from astral.geocoder import database, lookup
from astral.sun import sun
from datetime import datetime, timedelta
try:
from smbus2 import SMBus
except ImportError:
from smbus import SMBus
bus = smbus.SMBus(1)
uv_sensor = veml6075.VEML6075(i2c_dev=bus)
uv_sensor.set_shutdown(False)
uv_sensor.set_high_dynamic_range(False)
uv_sensor.set_integration_time('100ms')
def calculate_y_pos(x, centre):
"""Calculates the y-coordinate on a parabolic curve, given x."""
centre = 80
y = 1 / centre * (x - centre) ** 2
return int(y)
def circle_coordinates(x, y, radius):
"""Calculates the bounds of a circle, given centre and radius."""
x1 = x - radius # Left
x2 = x + radius # Right
y1 = y - radius # Bottom
y2 = y + radius # Top
return (x1, y1, x2, y2)
def map_colour(x, centre, start_hue, end_hue, day):
"""Given an x coordinate and a centre point, a start and end hue (in degrees),
and a Boolean for day or night (day is True, night False), calculate a colour
hue representing the 'colour' of that time of day."""
start_hue = start_hue / 360 # Rescale to between 0 and 1
end_hue = end_hue / 360
sat = 1.0
# Dim the brightness as you move from the centre to the edges
val = 1 - (abs(centre - x) / (2 * centre))
# Ramp up towards centre, then back down
if x > centre:
x = (2 * centre) - x
# Calculate the hue
hue = start_hue + ((x / centre) * (end_hue - start_hue))
# At night, move towards purple/blue hues and reverse dimming
if not day:
hue = 1 - hue
val = 1 - val
r, g, b = [int(c * 255) for c in colorsys.hsv_to_rgb(hue, sat, val)]
return (r, g, b)
def x_from_sun_moon_time(progress, period, x_range):
"""Recalculate/rescale an amount of progress through a time period."""
x = int((progress / period) * x_range)
return x
def sun_moon_time(city_name, time_zone):
"""Calculate the progress through the current sun/moon period (i.e day or
night) from the last sunrise or sunset, given a datetime object 't'."""
city = lookup(city_name, database())
# Datetime objects for yesterday, today, tomorrow
utc = pytz.utc
utc_dt = datetime.now(tz=utc)
local_dt = utc_dt.astimezone(pytz.timezone(time_zone))
today = local_dt.date()
yesterday = today - timedelta(1)
tomorrow = today + timedelta(1)
# Sun objects for yesterday, today, tomorrow
sun_yesterday = sun(city.observer, date=yesterday)
sun_today = sun(city.observer, date=today)
sun_tomorrow = sun(city.observer, date=tomorrow)
# Work out sunset yesterday, sunrise/sunset today, and sunrise tomorrow
sunset_yesterday = sun_yesterday["sunset"]
sunrise_today = sun_today["sunrise"]
sunset_today = sun_today["sunset"]
sunrise_tomorrow = sun_tomorrow["sunrise"]
# Work out lengths of day or night period and progress through period
if sunrise_today < local_dt < sunset_today:
day = True
period = sunset_today - sunrise_today
# mid = sunrise_today + (period / 2)
progress = local_dt - sunrise_today
elif local_dt > sunset_today:
day = False
period = sunrise_tomorrow - sunset_today
# mid = sunset_today + (period / 2)
progress = local_dt - sunset_today
else:
day = False
period = sunrise_today - sunset_yesterday
# mid = sunset_yesterday + (period / 2)
progress = local_dt - sunset_yesterday
# Convert time deltas to seconds
progress = progress.total_seconds()
period = period.total_seconds()
return (progress, period, day, local_dt)
def draw_background_left(progress, period, day):
"""Given an amount of progress through the day or night, draw the
background colour and overlay a blurred sun/moon."""
# x-coordinate for sun/moon
x = x_from_sun_moon_time(progress, period, WIDTH)
# If it's day, then move right to left
if day:
x = WIDTH - x
# Calculate position on sun/moon's curve
centre = WIDTH / 2
y = calculate_y_pos(x, centre)
# Background colour
background_left = map_colour(x, 80, mid_hue, day_hue, day)
# New image for background colour
img_left = Image.new('RGBA', (WIDTH, HEIGHT), color=background_left)
# New image for sun/moon overlay
overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
# Draw the sun/moon
circle = circle_coordinates(x, y, sun_radius)
overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity))
# Overlay the sun/moon on the background as an alpha matte
composite_left = Image.alpha_composite(img_left, overlay).filter(ImageFilter.GaussianBlur(radius=blur))
return composite_left
def draw_background_right(progress, period, day):
"""Given an amount of progress through the day or night, draw the
background colour and overlay a blurred sun/moon."""
# x-coordinate for sun/moon
x = x_from_sun_moon_time(progress, period, WIDTH)
# If it's day, then move right to left
if day:
x = WIDTH - x
# Calculate position on sun/moon's curve
centre = WIDTH / 2
y = calculate_y_pos(x, centre)
# Background colour
background_right = map_colour(x, 80, mid_hue, day_hue, day)
# New image for background colour
img_right = Image.new('RGBA', (WIDTH, HEIGHT), color=background_right)
# New image for sun/moon overlay
overlay = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
overlay_draw = ImageDraw.Draw(overlay)
# Draw the sun/moon
circle = circle_coordinates(x, y, sun_radius)
overlay_draw.ellipse(circle, fill=(200, 200, 50, opacity))
# Overlay the sun/moon on the background as an alpha matte
composite_right = Image.alpha_composite(img_right, overlay).filter(ImageFilter.GaussianBlur(radius=blur))
return composite_right
def overlay_text_left(img_left, position, text, font, align_right=False, rectangle=False):
draw = ImageDraw.Draw(img_left)
w, h = font.getsize(text)
if align_right:
x, y = position
x -= w
position = (x, y)
if rectangle:
x += 1
y += 1
position = (x, y)
border = 1
rect = (x - border, y, x + w, y + h + border)
rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
rect_draw = ImageDraw.Draw(rect_img)
rect_draw.rectangle(rect, (255, 255, 255))
rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0))
img_left = Image.alpha_composite(img_left, rect_img)
else:
draw.text(position, text, font=font, fill=(255, 255, 255))
return img_left
def overlay_text_right(img_right, position, text, font, align_right=False, rectangle=False):
draw = ImageDraw.Draw(img_right)
w, h = font.getsize(text)
if align_right:
x, y = position
x -= w
position = (x, y)
if rectangle:
x += 1
y += 1
position = (x, y)
border = 1
rect = (x - border, y, x + w, y + h + border)
rect_img = Image.new('RGBA', (WIDTH, HEIGHT), color=(0, 0, 0, 0))
rect_draw = ImageDraw.Draw(rect_img)
rect_draw.rectangle(rect, (255, 255, 255))
rect_draw.text(position, text, font=font, fill=(0, 0, 0, 0))
img_right = Image.alpha_composite(img_right, rect_img)
else:
draw.text(position, text, font=font, fill=(255, 255, 255))
return img_right
def analyse_pressure(pressure, t):
global time_vals, pressure_vals, trend
if len(pressure_vals) > num_vals:
pressure_vals = pressure_vals[1:] + [pressure]
time_vals = time_vals[1:] + [t]
# Calculate line of best fit
line = numpy.polyfit(time_vals, pressure_vals, 1, full=True)
# Calculate slope, variance, and confidence
slope = line[0][0]
intercept = line[0][1]
variance = numpy.var(pressure_vals)
residuals = numpy.var([(slope * x + intercept - y) for x, y in zip(time_vals, pressure_vals)])
r_squared = 1 - residuals / variance
# Calculate change in pressure per hour
change_per_hour = slope * 60 * 60
# variance_per_hour = variance * 60 * 60
mean_pressure = numpy.mean(pressure_vals)
# Calculate trend
if r_squared > 0.5:
if change_per_hour > 0.5:
trend = ">"
elif change_per_hour < -0.5:
trend = "<"
elif -0.5 <= change_per_hour <= 0.5:
trend = "-"
if trend != "-":
if abs(change_per_hour) > 3:
trend *= 2
else:
pressure_vals.append(pressure)
time_vals.append(t)
mean_pressure = numpy.mean(pressure_vals)
change_per_hour = 0
trend = "-"
# time.sleep(interval)
return (mean_pressure, change_per_hour, trend)
def describe_pressure(pressure):
"""Convert pressure into barometer-type description."""
if pressure < 970:
description = "storm"
elif 970 <= pressure < 990:
description = "rain"
elif 990 <= pressure < 1010:
description = "change"
elif 1010 <= pressure < 1030:
description = "fair"
elif pressure >= 1030:
description = "dry"
else:
description = ""
return description
def describe_humidity_in(humidity_in):
"""Convert relative humidity into good/bad description."""
if humidity_in < 30:
description = "dry"
elif 30 <= humidity_in <= 60:
description = "good"
elif humidity_in > 60:
description = "humid"
return description
def describe_humidity_out(humidity_out):
"""Convert relative humidity into good/bad description."""
if humidity_out < 30:
description = "dry"
elif 30 <= humidity_out <= 60:
description = "good"
elif humidity_out > 60:
description = "humid"
return description
def describe_uvindex(uvindex):
if uvindex < 3:
description = "low"
elif 3 <= uvindex < 6:
description = "mod"
elif 6 <= uvindex < 8:
description = "high"
elif 8 <= uvindex < 11:
desctption = "vh"
elif uvindex >= 11:
descrition = "ex"
else:
descrition = ""
return description
# Initialise the left LCD
disp_left = ST7735.ST7735(
port=0,
cs=0,
dc=9,
#backlight=19,
rotation=90,
spi_speed_hz=10000000
)
disp_left.begin()
# Initialise the right LCD
disp_right = ST7735.ST7735(
port=0,
cs=1,
dc=9,
#backlight=19,
rotation=90,
spi_speed_hz=10000000
)
disp_right.begin()
WIDTH = 160
HEIGHT = 80
# The city and timezone that you want to display.
city_name = "Halifax"
time_zone = "Canada/Atlantic"
# Values that alter the look of the background
blur = 50
opacity = 125
mid_hue = 0
day_hue = 25
sun_radius = 50
# Fonts
font_sm = ImageFont.truetype(UserFont, 12)
font_lg = ImageFont.truetype(UserFont, 14)
# Margins
margin = 3
# Set up BME280 weather sensor
bus = SMBus(1)
bme_in = BME280(0x76)
bme_out = BME280(0x77)
min_temp_in = None
max_temp_in = None
min_temp_out = None
max_temp_out = None
# Pressure variables
pressure_vals = []
time_vals = []
num_vals = 1000
interval = 1
trend = "-"
# Keep track of time elapsed
start_time = time.time()
while True:
path = os.path.dirname(os.path.realpath(__file__))
progress, period, day, local_dt = sun_moon_time(city_name, time_zone)
background_left = draw_background_left(progress, period, day)
background_right = draw_background_right(progress, period, day)
# Time.
time_elapsed = time.time() - start_time
date_string = local_dt.strftime("%B %-d")
time_string = local_dt.strftime("%-I:%M %p")
img_left = overlay_text_left(background_left, (15 + margin, 0 + margin), ("Indoor"), font_lg)
img_left = overlay_text_left(img_left, (150 - margin, 0 + margin), ("Outdoor"), font_lg, align_right=True)
img_right = overlay_text_right(background_right, (0 + margin, 0 + margin), date_string, font_lg)
img_right = overlay_text_right(img_right, (WIDTH - margin, 0 + margin), time_string, font_lg, align_right=True)
# Temperature in
temperature_in = bme_in.get_temperature()
if time_elapsed > 30:
if min_temp_in is not None and max_temp_in is not None:
if temperature_in < min_temp_in:
min_temp_in = temperature_in
elif temperature_in > max_temp_in:
max_temp_in = temperature_in
else:
min_temp_in = temperature_in
max_temp_in = temperature_in
#temp_string = f"{corr_temperature:.0f}°C"
temp_string_in = f"{temperature_in:.0f}°C"
img_left = overlay_text_left(img_left, (68, 18), temp_string_in, font_lg, align_right=True)
spacing = font_lg.getsize(temp_string_in)[1] + 1
if min_temp_in is not None and max_temp_in is not None:
range_string_in = f"{min_temp_in:.0f}-{max_temp_in:.0f}"
else:
range_string_in = "------"
img_left = overlay_text_left(img_left, (68, 18 + spacing), range_string_in, font_sm, align_right=True, rectangle=True)
temp_icon = Image.open(f"{path}/icons/temperature.png")
img_left.paste(temp_icon, (margin, 18), mask=temp_icon)
# Temperature out
temperature_out = bme_out.get_temperature()
if time_elapsed > 30:
if min_temp_out is not None and max_temp_out is not None:
if temperature_out < min_temp_out:
min_temp_out = temperature_out
elif temperature_out > max_temp_out:
max_temp_out = temperature_out
else:
min_temp_out = temperature_out
max_temp_out = temperature_out
#temp_string = f"{corr_temperature:.0f}°C"
temp_string_out = f"{temperature_out:.0f}°C"
img_left = overlay_text_left(img_left, (150 - margin, 18), temp_string_out, font_lg, align_right=True)
spacing = font_lg.getsize(temp_string_out.replace(",", ""))[1] + 1
if min_temp_out is not None and max_temp_out is not None:
range_string_out = f"{min_temp_out:.0f}-{max_temp_out:.0f}"
else:
range_string_out = "------"
img_left = overlay_text_left(img_left, (150 - margin, 18 + spacing), range_string_out, font_sm, align_right=True, rectangle=True)
temp_icon = Image.open(f"{path}/icons/temperature.png")
img_left.paste(temp_icon, (80, 18), mask=temp_icon)
# Humidity in
humidity_in = bme_in.get_humidity()
humidity_string_in = f"{humidity_in:.0f}%"
img_left = overlay_text_left(img_left, (68, 48), humidity_string_in, font_lg, align_right=True)
spacing = font_lg.getsize(humidity_string_in)[1] + 1
humidity_desc_in = describe_humidity_in(humidity_in).upper()
img_left = overlay_text_left(img_left, (68, 48 + spacing), humidity_desc_in, font_sm, align_right=True, rectangle=True)
humidity_icon = Image.open(f"{path}/icons/humidity.png")
img_left.paste(humidity_icon, (margin, 48), mask=humidity_icon)
# Humidity out
humidity_out = bme_out.get_humidity()
humidity_string_out = f"{humidity_out:.0f}%"
img_left = overlay_text_left(img_left, (150 - margin, 48), humidity_string_out, font_lg, align_right=True)
spacing = font_lg.getsize(humidity_string_out.replace(",", ""))[1] + 1
humidity_desc_out = describe_humidity_out(humidity_out).upper()
img_left = overlay_text_left(img_left, (150 - margin - 1, 48 + spacing), humidity_desc_out, font_sm, align_right=True, rectangle=True)
humidity_icon = Image.open(f"{path}/icons/humidity.png")
img_left.paste(humidity_icon, (80, 48), mask=humidity_icon)
# UV Index
uva, uvb = uv_sensor.get_measurements()
uv_comp1, uv_comp2 = uv_sensor.get_comparitor_readings()
uv_indices = uv_sensor.convert_to_index(uva, uvb, uv_comp1, uv_comp2)
uv =('{0[2]}'.format(uv_indices)) #uv reading as a float value with no text mixed in
u = int(float(uv)) #uv index converted to an integer value
uvindex = round(u)
uvindex_string = f"{uvindex:.0f} UV"
img_right = overlay_text_right(img_right, (150 - margin, 18), uvindex_string, font_lg, align_right=True)
spacing = font_lg.getsize(uvindex_string.replace(",", ""))[1] + 1
uvindex_desc = describe_uvindex(uvindex).upper()
img_right = overlay_text_right(img_right, (150 - margin - 1, 18 + spacing), uvindex_desc, font_sm, align_right=True, rectangle=True)
uvindex_icon = Image.open(f"{path}/icons/uvindex.png")
img_right.paste(uvindex_icon, (80, 18), mask=uvindex_icon)
# Pressure
pressure = bme_out.get_pressure()
t = time.time()
mean_pressure, change_per_hour, trend = analyse_pressure(pressure, t)
#pressure_string = f"{int(mean_pressure):} {trend}"
pressure_string = f"{pressure:.0f} {trend}"
img_right = overlay_text_left(img_right, (WIDTH - margin, 48), pressure_string, font_lg, align_right=True)
#pressure_desc = describe_pressure(mean_pressure).upper()
pressure_desc = describe_pressure(pressure).upper()
spacing = font_lg.getsize(pressure_string.replace(",", ""))[1] + 1
img_right = overlay_text_right(img_right, (150 - margin - 1, 48 + spacing), pressure_desc, font_sm, align_right=True, rectangle=True)
pressure_icon = Image.open(f"{path}/icons/weather-{pressure_desc.lower()}.png")
img_right.paste(pressure_icon, (80, 48), mask=pressure_icon)
# Display image
disp_left.display(img_left)
disp_right.display(img_right)